This is the first set that I’m not a 100% proud of. After being stuck on P26 for days, I just stole the code from clojure.contrib.combinatorics. At least I learned a few things! (defn-) creates a generator! Now I can create infinite sequences! Also, there is a better example of the #(%) syntax. The (cond …) syntax also looks useful, as now I can replicate JSP’s choose/when/otherwise.
; P23 (**) Extract a given number of randomly selected elements from a list.
(defn rnd_select [n input]
(if (> n 0)
(loop [c n
output '()
[r x] (remove_at (rand-int (count input)) input)]
(if (> c 0)
(recur (dec c) (cons x output) (remove_at (rand-int (count r)) r))
output)) nil)
)
; P24 (*) Lotto: Draw N different random numbers from the set 1..M.
; The selected numbers shall be put into a result list.
(defn lotto [n m] (rnd_select n (s99_range 1 m)))
; P25 (*) Generate a random permutation of the elements of a list.
(defn randomPermute [input]
(loop [c (count input)
output '()
[r x] (remove_at (rand-int (count input)) input)]
(if (> c 1)
(recur (dec c) (cons x output) (remove_at (rand-int (count r)) r))
(cons x output))))
; P26 (**) Generate the combinations of K distinct objects chosen from the N elements of a list.
(comment "In how many ways can a committee of 3 be chosen from a group of 12 people? We all know that there are C(12,3) = 220 possibilities (C(N,K) denotes the well-known binomial coefficient). For pure mathematicians, this result may be great. But we want to really generate all the possibilities.")
(defn- index-combinations
[n cnt]
(lazy-seq
(let [c (vec (cons nil (for [j (range 1 (inc n))] (+ j cnt (- (inc n)))))),
iter-comb
(fn iter-comb [c j]
(if (> j n) nil
(let [c (assoc c j (dec (c j)))]
(if (< (c j) j) [c (inc j)]
(loop [c c, j j]
(if (= j 1) [c j]
(recur (assoc c (dec j) (dec (c j))) (dec j)))))))),
step
(fn step [c j]
(cons (rseq (subvec c 1 (inc n)))
(lazy-seq (let [next-step (iter-comb c j)]
(when next-step (step (next-step 0) (next-step 1)))))))]
(step c 1))))
(defn combinations
"All the unique ways of taking n different elements from items"
[n items]
(let [v-items (vec (reverse items))]
(if (zero? n) (list ())
(let [cnt (count items)]
(cond
(> n cnt) nil
(= n cnt) (list (seq items))
:else (map #(map v-items %) (index-combinations n cnt)))))))

An alternative implementation I cam up with:
(defn subsets [n items]
(cond
(= n 0)
‘(())
(empty? items)
‘()
:default
(concat
(map #(cons (first items) %) (subsets (dec n) (rest items)))
(subsets n (rest items)))))
(defn permutations [items]
(let [n (count items)]
(if (= n 0)
(list ‘())
(loop [i (dec n)
result ‘()]
(if (>= i 0)
(recur
(dec i)
(concat
(map
#(cons (nth items i) %)
(permutations (concat (take i items) (drop (inc i) items))))
result))
result)))))
(defn combinations [n items]
(mapcat permutations (subsets n items)))